Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning System

Author:

Lee Ming-Che,Chang Jia-Wei,Wang Tzone I,Huang Zi Feng

Abstract

Object-oriented programming skill is important for the software professionals. It has become a mandatory course in information science and computer engineering departments of universities. However, it is hard for novice learners to understand the syntax and semantics of the language while learning object-oriented programming, and that makes them feel frustrated. The purpose of this study is to build an object-oriented programming assistant system that gives syntax error feedback based the variation theory. We established the syntax correction module on the basis of the Virtual Teaching Assistant (VTA). While compiling codes, the system will display syntax errors, if any, with feedbacks that are designed according to the variation theory in different levels (the generation, contrast, separation, and fusion levels) to help them correcting the errors. The experiment design of this study splits the participants, who are university freshmen, into two groups by the S-type method based on the result of a mid-term test. The learning performances and questionnaires were used for surveying, followed by in-depth inter-views, to evaluate the feasibility of the proposed assistant system. The findings indicate that the learners in the experimental group achieved better learning outcomes than their counterparts in the control group. This can also prove that the strategy of using the variation theory in implementing feed-back for object-oriented programming is effective.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assistant Solutions in Software Engineering: A Systematic Literature Review;2023 IEEE 14th International Conference on Software Engineering and Service Science (ICSESS);2023-10-17

2. Automatic Grammar Correction Method for English Translation Based on Multi-Feature Fusion;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

3. Application of intelligent grammar error correction system following deep learning algorithm in English teaching;International Journal of Grid and Utility Computing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3