Mining Smart Learning Analytics Data Using Ensemble Classifiers

Author:

Kausar Samina,Oyelere Solomon Sunday,Salal Yass Khudheir,Hussain SadiqORCID,Cifci Mehmet Akif,Hilcenko Slavoljub,Iqbal Muhammad Shahid,Wenhao Zhu,Huahu Xu

Abstract

Recent progress in technology has altered the learning behaviors of students; besides giving a new impulse which reshapes the education itself. It can easily be said that the improvements in technologies empower students to learn more efficiently, effectively and contentedly. Smart Learning (SL) despite not being a new concept describing learning methods in the digital age- has caught attention of researchers. Smart Learning Analytics (SLA) provides students of all ages with research-proven frameworks, helping students to benefit from all kinds of resources and intelligent tools. It aims to stimulate students to have a deep comprehension of the context and leads to higher levels of achievements. The transformation of education to smart learning will be realized by reengineering the fundamental structures and operations of conventional educational systems. Accordingly, students can learn the proper information yet to support to learn real-world context, more and more factors are needed to be taken into account. Learning has shifted from web-based dumb materials to context-aware smart ubiquitous learning. In the study, a SLA dataset was explored and advanced ensemble techniques were applied for the classification task. Bagging Tree and Stacking Classifiers have outperformed other classical techniques with an accuracy of 79% and 78% respectively.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalizability evaluations of heterogeneous ensembles for river health predictions;Ecological Informatics;2024-09

2. Review of Genetic Algorithm to improve Students Academic Performance by applying Smart Learning;International Journal of Combinatorial Optimization Problems and Informatics;2023-12-31

3. Student success analysis for minority students in higher education;2023 IEEE International Conference on Big Data (BigData);2023-12-15

4. Using Artificial Intelligence to Track and Predict Student Performance in Degree Programmes;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08

5. A comparative study of ensemble methods in the field of education: Bagging and Boosting algorithms;International Journal of Assessment Tools in Education;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3