Abstract
Technology world has greatly evolved over the past decades, which led to inflated data volume. This progress of technology in the digital form generated scattered texts across millions of web pages. Unstructured texts contain a vast amount of textual data. Discover of useful and interesting relations from unstructured texts requires more processing by computers. Therefore, text mining and information extraction have become an exciting research field to get structured and valuable information. This paper focuses on text pre-processing of automotive advertisements domains to configure a structured database. The structured database was created by extract the information over unstructured automotive advertisements, which is an area of natural language processing. Information extraction deals with finding factual information in text using learning regular expressions. We manually craft rule-based specific approaches to extract structured information from unstructured web pages. Structured information will be provided by user-friendly search engine designed for topic-specific knowledge. Consequently, this information that extracted from these advertisements uses to perform a structured search over certain interesting attributes. Thus, the tuples are assigned a probability and indexed to support the efficiency of extraction and exploration via user queries.
Publisher
International Association of Online Engineering (IAOE)
Subject
General Engineering,Education
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献