Didactic Simulations for Electromagnetism Based on an Element Oriented Model

Author:

Salmi KhalidORCID,Magrez Hamid,Ziyyat Abdelhak

Abstract

The web has spurred our imagination as to how education can be drastically transformed and improved through the adoption of Information and Communications Technology (ICT) and the use of simulations quickly became a wildly disputed topic. This kind of simulations are considered as a significant pedagogical innovation especially in the electromagnetics course where it is possible to concretize , via a set of interactive simulations, some experiments that are inaccessible in real life. The aim of interactive simulations is to enhance the student’s understanding by providing him a meaningful insight into the studied notions, phenomena, concepts, laws and models. The design of didactic simulations is constrained by both technological choices, learning theories and numerical models which should guarantee a minimal execution time, a better stability and an acceptable precision. Our goal in this work is to design didactic simulations for electromagnetism using a numerical Element Oriented Method (EOM). The proposed EOM meets the needs of speed, accuracy and ensure bet-ter dynamical and visual interpretations of the basic laws of electromagnetic. Moreover, these applications are not only available for traditional training in the classroom but also for new training platforms provided by digital technologies such as web-based training, e-learning and m-learning.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radioactivity, Radiation, and Particle Physics in General;The International Handbook of Physics Education Research: Learning Physics;2023-03-17

2. The Added Value of Integrating the Electronics Workbench Simulator in the Teaching of Electrical Concepts to Moroccan High School Students;International Journal of Online and Biomedical Engineering (iJOE);2022-09-14

3. A Finite Element Based Tool to Support the Understanding of Electromagnetism Concepts;2022 31st Annual Conference of the European Association for Education in Electrical and Information Engineering (EAEEIE);2022-06-29

4. The Use of Educational Software in Teaching Physics in the Moroccan Context;International Journal of Emerging Technologies in Learning (iJET);2020-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3