Comparative Analysis of Supervised Machine Learning Algorithms to Build a Predictive Model for Evaluating Students’ Performance

Author:

El Guabassi Inssaf,Bousalem Zakaria,Marah Rim,Qazdar Aimad

Abstract

In recent years, the world's population is increasingly demanding to predict the future with certainty, predicting the right information in any area is becoming a necessity. One of the ways to predict the future with certainty is to determine the possible future. In this sense, machine learning is a way to analyze huge datasets to make strong predictions or decisions. The main objective of this research work is to build a predictive model for evaluating students’ performance. Hence, the contributions are threefold. The first is to apply several supervised machine learning algorithms (i.e. ANCOVA, Logistic Regression, Support Vector Regression, Log-linear Regression, Decision Tree Regression, Random Forest Regression, and Partial Least Squares Regression) on our education dataset. The second purpose is to compare and evaluate algorithms used to create a predictive model based on various evaluation metrics. The last purpose is to determine the most important factors that influence the success or failure of the students. The experimental results showed that the Log-linear Regression provides a better prediction as well as the behavioral factors that influence students’ performance.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Student Performance to Boost Educational Outcomes: The Efficacy of a Random Forest Approach;2024 13th International Conference on Educational and Information Technology (ICEIT);2024-03-22

2. Educational Data Mining: Employing Machine Learning Techniques and Hyperparameter Optimization to Improve Students’ Academic Performance;International Journal of Online and Biomedical Engineering (iJOE);2024-02-27

3. Cooperative Learning Groups: A New Approach Based on Students’ Performance Prediction;International Journal of Online and Biomedical Engineering (iJOE);2023-08-31

4. A Probabilistic Prediction Method of Carbon Financial Default Risk Based on Python and Machine Learning;2023 2nd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS);2023-07

5. Educational Data Mining in Prediction of Students’ Learning Performance: A Scoping Review;IFIP Advances in Information and Communication Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3