Prognosis of Thoracic Cancer Using the Bierman Random Committee Machine Learning

Author:

Mansour Ezzat A.

Abstract

Thoracic most cancers are a prime problem in the clinical field. Unexpected occur-ring cannot be predicted earlier but if the strategy is fine-tuned properly then the prognosis of cancer is not a major issue. But the problem is how to find out the proper layout with all possible features. The sector of Thoracic Surgery is offering a source of the dataset with all feasible attributes of thoracic cancer. All the features suggested by this medical sector were approved by the Consortium of Tuberculosis and Pulmonary Diseases. The random committee is a novel hybrid algorithm that utilizes the benefit of both random forests with committee concepts. Many random forests are created as the result of the iteration. But anyone can be created and the committee analyses and retains any one optimal solution. Brei man, the first researcher to propose the general concept of Radio Frequency following the same he proposed the famous and most popular forest RF algorithm. 

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3