Digital Training Platform for Comprehensive Traffic Simulation

Author:

Chechina A.,Churbanova N.,Garibyan A.,Trapeznikova M.

Abstract

The paper deals with the development of software for traffic flow simulation combining the widest spectrum of mathematical approaches used in this field. Macro- and microscopic models, models of cellular automata as well as different numerical methods of their computer implementation are incorporated into a digital platform. Original developments of the authors of the paper  such as quasi-gas dynamic traffic model and multilane cellular automata model take the main place. Potential users of the software are students and researchers. The platform possesses an intuitive graphical interface ensuring interactivity. Microsoft Visual Studio with C# is chosen as the development environment, the Unity 3D engine is employed for visualization and collaboration with WinForm projects. In the future, the platform can be transformed into a network computer laboratory providing access to information resources via  Internet.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Network Computer Laboratory for Training in Road Traffic Simulation and Model Verification;2023 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED);2023-11-15

2. Visual Environment for Mathematical Modeling of Traffic Flows;2022 Systems of Signals Generating and Processing in the Field of on Board Communications;2022-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3