Accuracy and Efficiency Comparison of Object Detection Open-Source Models

Author:

Jabir Brahim,Falih Noureddine,Rahmani Khalid

Abstract

In agriculture, weeds cause direct damage to the crop, and it primarily affects the crop yield potential. Manual and mechanical weeding methods consume a lot of energy and time and do not give efficient results. Chemical weed control is still the best way to control weeds. However, the widespread and large-scale use of herbicides is harmful to the environment. Our study's objective is to propose an efficient model for a smart system to detect weeds in crops in real-time using computer vision. Our experiment dataset contains images of two different weed species well known in our region strained in this region with a temperate climate. The first is the Phalaris Paradoxa. The second is Convolvulus, manually captured with a professional camera from fields under different lighting conditions (from morning to afternoon in sunny and cloudy weather). The detection of weed and crop has experimented with four recent pre-configured open-source computer vision models for object detection: Detectron2, EfficientDet, YOLO, and Faster R-CNN. The performance comparison of weed detection models is executed on the Open CV and Keras platform using python language.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3