Image Compression Using Neural Networks: A Review

Author:

Sadeeq Haval Tariq,Hameed Thamer Hassan,Abdi Abdo Sulaiman,Abdulfatah Ayman Nashwan

Abstract

Computer images consist of huge data and thus require more memory space. The compressed image requires less memory space and less transmission time. Imaging and video coding technology in recent years has evolved steadily. However, the image data growth rate is far above the compression ratio growth, Considering image and video acquisition system popularization. It is generally accepted, in particular that further improvement of coding efficiency within the conventional hybrid coding system is increasingly challenged. A new and exciting image compression solution is also offered by the deep convolution neural network (CNN), which in recent years has resumed the neural network and achieved significant success both in artificial intelligent fields and in signal processing. In this paper we include a systematic, detailed and current analysis of image compression techniques based on the neural network. Images are applied to the evolution and growth of compression methods based on the neural networks. In particular, the end-to-end frames based on neural networks are reviewed, revealing fascinating explorations of frameworks/standards for next-generation image coding. The most important studies are highlighted and future trends even envisaged in relation to image coding topics using neural networks.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Masked Feature Compression for Object Detection;Mathematics;2024-06-14

2. A deep learning-based compression and classification technique for whole slide histopathology images;International Journal of Information Technology;2024-06-09

3. Lossless Image Compression using K-Means Clustering in Color Pixel Domain;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

4. SSE_CIB: Secure storage and exchange of copyrighted images using blockchain;Transactions on Emerging Telecommunications Technologies;2024-01-30

5. A State Table SPHIT Approach for Modified Curvelet-based Medical Image Compression;International Journal of Online and Biomedical Engineering (iJOE);2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3