Deep Learning in Retinal Image Segmentation and Feature Extraction: A Review

Author:

Hoque Mohammed Enamul,Kipli Kuryati

Abstract

Image recognition and understanding is considered as a remarkable subfield of Artificial Intelligence (AI). In practice, retinal image data have high dimensionality leading to enormous size data. As the morphological retinal image datasets can be analyzed in an expansive and non-invasive way, AI more precisely Deep Learning (DL) methods are facilitating in developing intelligent retinal image analysis tools. The most recently developed DL technique, Convolutional Neural Network (CNN) showed remarkable efficiency in identifying, localizing, and quantifying the complex and hierarchical image features that are responsible for severe cardiovascular diseases. Different deep layered CNN architectures such as LeeNet, AlexNet, and ResNet have been developed exploiting CNN morphology. This wide variety of CNN structures can iteratively learn complex data structures of different datasets through supervised or unsupervised learning and perform exquisite analysis for feature recognition independently to diagnose threatening cardiovascular diseases. In modern ophthalmic practice, DL based automated methods are being used in retinopathy screening, grading, identifying, and quantifying the pathological features to employ further therapeutic approaches and offering a wide potentiality to get rid of ophthalmic system complexity. In this review, the recent advances of DL technologies in retinal image segmentation and feature extraction are extensively discussed. To accomplish this study the pertinent materials were extracted from different publicly available databases and online sources deploying the relevant keywords that includes retinal imaging, artificial intelligence, deep learning and retinal database. For the associated publications the reference lists of selected articles were further investigated.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical image registration and its application in retinal images: a review;Visual Computing for Industry, Biomedicine, and Art;2024-08-21

2. Estimation of aquatic ecosystem health using deep neural network with nonlinear data mapping;Ecological Informatics;2024-07

3. Oculomics: A Crusade Against the Four Horsemen of Chronic Disease;Ophthalmology and Therapy;2024-04-17

4. Enhancing Retinal Image Analysis through Deep Learning-Based Blood Vessel Segmentation;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12

5. A Novel Retinal Image Contrast Enhancement – Fuzzy-Based Method;2023 24th International Arab Conference on Information Technology (ACIT);2023-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3