Adapting Internet of Things to Arduino-based Devices for Low-Cost Remote Sensing in School Science Learning Environments

Author:

Ga Seok-HyunORCID,Cha Hyun-JungORCID,Kim Chan-JongORCID

Abstract

<p class="0abstract"><span lang="EN-US">We examine the major technical problems that students experience in authentic scientific inquiry and propose an Arduino-based device, adapting the Internet of Things technology, which is designed for the school science in order to solve those technical problems. Three major technical problems as follows: First, it is difficult to have a variety of measuring tools which may satisfy the needs of students. Second, it is hard to equip students with tools befitting the complex inquiry procedures which students develop on their own. Lastly, there exists a problem in which a particular group(s) of students take advantage of their competence in technology and have a monopoly in the process of data analysis. Physical computing and the IoT technology can provide solutions to these problems. Development boards like Arduino and Raspberry Pi can be purchased at affordable prices, which allows for measuring devices to be made at low cost by connecting sensors to those boards. Utilizing these development boards may also lead to the possibility to optimize measuring methods or procedures for inquiries of each student. By transmitting the measured data to the IoT Platform, students can have an equal access to the data and analyze it easily. We also investigate technologies used in IoT-applied physical computing including development boards, IoT platforms, and telecommunications technologies. Lastly, as an example of inquiry that adapts physical computing and IoT, we introduce the case of transferring data, measured by a temperature/humidity sensor connected to a development board, to the IoT Platform and visualizing them.</span></p><div id="dicLayer" style="display: none;"> </div><div id="dicRawData" style="display: none;"> </div><div id="dicLayerLoader"> </div>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3