Prediction of Drug Users Based on Facial Scratching Pattern

Author:

Priambodo BagusORCID,Jumaryadi Yuwan,Rahayu Sarwati,Firdaus Diky,Sobri Muhammad,Pratama Putra Zico

Abstract

The current practice of drug inspection is usually carried out at school or university. This procedure, however, is not effective and efficient, as the urine samples are taken randomly. In many cases, the drug-taking student is not present or evades the urine or hair inspection. A predictive drug user tool is needed, where only suspected student drug users are selected for a urine test. In general, drug abuse constantly causes terrible damage to the skin lesions Since they damage the skin during hallucinations due to the effects of drugs. The Grey Level of Occurrence Matrix (GLCM) is used in this study to discover the scratch pattern. Our proposed GLCM is evaluated with 104 images collected from the Internet. Training data is generated from 88 images of people before and after the drug was collected from the Internet, and we set 16 image faces to test the prediction.  The experiment shows that the prediction based on GLCM has better accuracy (81%) compared with the local binary pattern (LBP) which only reach up to 75%.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Automatic Illicit Drug Abuser Identification System Based on Facial Features Extracted;2023 International Conference on Engineering Applied and Nano Sciences (ICEANS);2023-10-25

2. PENGGUNAAN APLIKASI DETEKSI PECANDU NARKOBA DI MERUYA UTARA;Jurnal Pasopati : Pengabdian Masyarakat dan Inovasi Pengembangan Teknologi;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3