Implementing a Risk Assessment System of Electric Welders’ Muscle Injuries for Working Posture Detection with AI Technology

Author:

Ruengdech ChayapolORCID,Howimanporn SuppachaiORCID,Intarakumthornchai Thanasan,Chookaew SasithornORCID

Abstract

Maintaining health and safety is essential for workers’ quality of life, and thus, this has become one of the main priorities for industrial enterprises. Electric welders want required safety precautions to be implemented during work in industries with safety risks, especially muscle injuries. This challenge needs to be addressed by the safety officer, who should suggest a way to decrease the risk for workers. However, traditional assessment based on human evaluation and the need for expertise and accuracy in risk assessment have produced muscle injuries. Thus, using artificial intelligence (AI) technology to mitigate risk assessment is cost-effective and accurate. This study proposed a risk assessment system for muscle injuries (RASMI) with AI technology to assess electric welder postures with rapid entire body assessment (REBA) standards to identify the cause of muscle injuries and to warn electric welders when their pose may be a risk. The findings showed that the system can effectively and precisely evaluate the risk assessment of electric welders’ muscle injuries. Additional results showed that they perceive using AI technology to enhance wellness positively in terms of working with warnings for posture adjustment or behavior that can significantly affect an operator’s long-term health and well-being.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3