Enhanced Water Quality Prediction in the Yellow River Basin: The Application of the HHO-LSTM Model

Author:

Wu Minning,Blancaflor Eric B.,Ren Fei,Wang Yong,Dong Ting

Abstract

In the pivotal water resource region of the Yellow River Basin in China, precise prediction of water resources is essential for their effective and rational management. This study introduces a novel approach to water resource prediction by employing the Harris Hawks Optimization-Long Short-Term Memory (HHO-LSTM) model. This method overcomes the constraints faced by traditional techniques in processing time series data and various variable factors. It encompasses a comprehensive description of the multi-source hydrological data collection process within the Yellow River Basin, followed by meticulous data preprocessing. The data set for this study includes estimates of four critical water quality parameters, and the efficacy of the model is gauged through the mean squared error (MSE) and root mean squared error (RMSE) metrics. This facilitates the projection of future water quality trends in specific areas by leveraging historical water quality data. The HHO-LSTM model has demonstrated outstanding accuracy and robustness in predicting water quality across diverse temporal scales and water resource variables, marking a significant advancement in water resource management within the Yellow River Basin. This approach not only enhances current management strategies but also contributes valuable insights for ongoing water resource research and decision-making processes.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3