Design of an EMG Signal Generator Based on Random Firing Patterns

Author:

León GabrielaORCID,López EmelyORCID,López Hans,Hernandez CesarORCID

Abstract

Electromyographic (EMG) signals exhibit complex interference patterns that comprise several single motor unit action potentials (SMUAPs). Evidence of a model that can generate EMG signals and considers intrinsic characteristics, such as long-range dependence (LRD) or shortrange dependence (SRD), or that supports the study of pathology-related signals is lacking. Therefore, the present study aimed to develop an EMG signal generator based on SRD or LRD derived from firing patterns. We used a dynamic model to parameterize up to 15 SMUAP waveforms of real EMG signals extracted from a database. Then, we used relative appearance rates for some signals based on the number of SMUAPs to generate the latter randomly. Furthermore, we complemented our model by generating a random firing pattern. The synthetic reconstruction of the signals indicated a displacement compared with their respective firing patterns, with the highest error rate being 4.1%. The model of the EMG signal generator in its current state could be useful for a specialist who intends to study the behavior of the signals, starting with the exploration of synthetic signals and then proceeding to the real signals.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3