Comprehensive Cardiac Ischemia Classification Using Hybrid CNN-Based Models

Author:

Makhir AbdelmalekORCID,El Yousfi Alaoui My Hachem,Belarbi Larbi

Abstract

This study addresses the critical issue of classifying cardiac ischemia, a disease with significant global health implications that contributes to the global mortality rate. In our study, we tackle the classification of ischemia using six diverse electrocardiogram (ECG) datasets and a convolutional neural network (CNN) as the primary methodology. We combined six separate datasets to gain a more comprehensive understanding of cardiac electrical activity, utilizing 12 leads to obtain a broader perspective. A discrete wavelet transform (DWT) preprocessing was used to eliminate irrelevant information from the signals, aiming to improve classification results. Focusing on accuracy and minimizing false negatives (FN) in ischemia detection, we enhance our study by incorporating various machine learning models into our base model. These models include multilayer perceptron (MLP), support vector machines (SVM), random forest (RF), long short-term memory (LSTM), and bidirectional LSTM (BiLSTM), allowing us to leverage the strengths of each algorithm. The CNN-BiLSTM model achieved the highest accuracy of 99.23% and demonstrated good sensitivity of 98.53%, effectively reducing false negative cases in the overall tests. The CNN-BiLSTM model demonstrated the ability to effectively identify abnormalities, misclassifying only 25 out of 1,673 ischemic cases in the test set as normal. This is due to the BiLSTM’s efficiency in capturing long-range dependencies and sequential patterns, making it suitable for tasks involving time-series data such as ECG signals. In addition, CNNs are well-suited for hierarchical feature learning and complex pattern recognition in ECG data.

Publisher

International Association of Online Engineering (IAOE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Atrial Fibrillation and Cardiac Arrhythmias by a CNN-BiLSTM Hybrid Model with DWT Preprocessing;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3