Proposed Approach for Object Detection and Recognition by Deep Learning Models Using Data Augmentation

Author:

M. Abdulkareem Ismael,K. AL-Shammri Faris,A. Khalid Noor AldeenORCID,A. Omran Natiq

Abstract

Object detection and recognition play a crucial role in computer vision applications, ranging from security systems to autonomous vehicles. Deep learning algorithms have shown remarkable performance in these tasks, but they often require large, annotated datasets for training. However, collecting such datasets can be time-consuming and costly. Data augmentation techniques provide a solution to this problem by artificially expanding the training dataset. In this study, we propose a deep learning approach for object detection and recognition that leverages data augmentation techniques. We use deep convolutional neural networks (CNNs) as the underlying architecture, specifically focusing on popular models such as You Only Look Once version 3 (YOLOv3). By augmenting the training data with various transformations, such as rotation, scaling, and flipping, we can effectively increase the diversity and size of the dataset. Our approach not only improves the robustness and generalization of the models but also reduces the risk of overfitting. By training on augmented data, the models can learn to recognize objects from different viewpoints, scales, and orientations, leading to improved accuracy and performance. We conduct extensive experiments on benchmark datasets and evaluate the performance of our approach using standard metrics such as precision, recall, and mean average precision (mAP). The experimental results demonstrate that our data augmentation-based deep learning approach achieves superior object detection and recognition accuracy compared to traditional training methods without data augmentation. We compare the average accuracy of the YOLOv3-SPP model with two other variants of the YOLOv3 algorithm: one with a feature extraction network consisting of 53 convolutional layers and the other with 13 convolutional layers. The average accuracy of the proposed model (YOLOv3-SPP) is reported as accuracy of 97%, F1-score of 96%, precision of 94%, and average Intersection over Union (IoU) of 78.04%.

Publisher

International Association of Online Engineering (IAOE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal deep learning based object detection for pedestrian and anomaly recognition model;International Journal of Information Technology;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3