IMS Compliant Ontological Learner Model for Adaptive E-Learning Environments

Author:

Zine OthmaneORCID,Derouich Aziz,Talbi Abdennebi

Abstract

It has been proven that adopting the “one size fits one” approach has better learning outcomes than the “one size fits all” one. A customized learning experience is attainable with the use of learner models, the main source of variability, in adaptive educational hypermedia systems or any intelligent learning environment. While such a model includes a large number of characteristics which can be difficult to incorporate and use, several standards that were developed to overcome these complexities. In this paper, the proposed work intents to improve learner’s model representation to meet the requirements and needs of adaptation. We took IMS-LIP, IMS-ACCLIP and IMS-RDCEO standards into consideration and incorporated their characteristics to our proposed learner model so that it conforms to international standards. Moreover, the suggested learner model takes advantage of the semantic web technologies that offer a better data organization, indexing and management and ensures the reusability, the interoperability and the extensibility of this model. Furthermore, due to the use of ontologies, the metadata about a learner can be used by a wide range of personalization techniques to provide more accurate customization.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ontology-based group assessment analytics framework for performances prediction in project-based collaborative learning;Smart Learning Environments;2023-09-26

2. A Framework of Quality-Aware Personalized Task Matching For Mobile Crowdsensing;2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE);2023-05-20

3. Intelligent System for Customizing Evaluation Activities Implemented in Virtual Learning Environments: Experiments & Results;Computación y Sistemas;2022-03-30

4. Towards Open Learner Models Including the Flow State;Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization;2020-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3