Abstract
In the present paper, we address to construct a structured user profile in a Small Private Online Course (SPOC) based on user’s video clickstream analysis. We adopt an implicit approach to infer user’s preferences and experience difficulty based on user’s video sequence viewing analysis at the click-level as Play, Pause, Move forward… the Bayesian method is used in order to infer implicitly user’s interests. Learners with similar clickstream behavior are then segmented into clusters by using the unsupervised K-Means clustering algorithm. Videos that could meet the individual learner interests and offer a best and personalized experienced learning can therefore be recommended for a learner while enrolling in a SPOC based on his videos interactions and exploiting similar learners’ profiles.
Publisher
International Association of Online Engineering (IAOE)
Subject
General Engineering,Education
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献