Fast AES-Based Universal Hash Functions and MACs

Author:

Bariant Augustin,Baudrin Jules,Leurent Gaëtan,Pernot Clara,Perrin Léo,Peyrin Thomas

Abstract

Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components in many popular modes of operation for various use-cases, such as Message Authentication Codes (MACs), authenticated encryption, wide block ciphers, etc. In this paper, we extend and improve upon existing design approaches and present a general framework for the construction of UHFs, relying only on the AES round function and 128-bit word-wide XORs. This framework, drawing inspiration from tweakable block ciphers design, allows both strong security arguments and extremely high throughput. The security with regards to differential cryptanalysis is guaranteed thanks to an optimized MILP modelling strategy, while performances are pushed to their limits with a deep study of the details of AES-NI software implementations. In particular, our framework not only takes into account the number of AES-round calls per message block, but also the very important role of XOR operations and the overall scheduling of the computations.We instantiate our findings with two concrete UHF candidates, both requiring only 2 AES rounds per 128-bit message block, and each used to construct two MACs. First, LeMac, a large-state primitive that is the fastest MAC as of today on modern Intel processors, reaching performances of 0.068 c/B on Intel Ice Lake (an improvement of 60% in throughput compared to the state-of-the-art). The second MAC construction, PetitMac, provides an interesting memory/throughput tradeoff, allowing good performances on many platforms.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3