Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols

Author:

Aly Abdelrahaman,Ashur Tomer,Ben-Sasson Eli,Dhooghe Siemen,Szepieniec Alan

Abstract

While traditional symmetric algorithms like AES and SHA-3 are optimized for efficient hardware and software implementations, a range of emerging applications using advanced cryptographic protocols such as multi-party computation and zero knowledge proofs require optimization with respect to a different metric: arithmetic complexity.In this paper we study the design of secure cryptographic algorithms optimized to minimize this metric. We begin by identifying the differences in the design space between such arithmetization-oriented ciphers and traditional ones, with particular emphasis on the available tools, efficiency metrics, and relevant cryptanalysis. This discussion highlights a crucial point—the considerations for designing arithmetization-oriented ciphers are oftentimes different from the considerations arising in the design of software- and hardware-oriented ciphers.The natural next step is to identify sound principles to securely navigate this new terrain, and to materialize these principles into concrete designs. To this end, we present the Marvellous design strategy which provides a generic way to easily instantiate secure and efficient algorithms for this emerging domain. We then show two examples for families following this approach. These families — Vision and Rescue — are benchmarked with respect to three use cases: the ZK-STARK proof system, proof systems based on Rank-One Constraint Satisfaction (R1CS), and Multi-Party Computation (MPC). These benchmarks show that our algorithms achieve a highly compact algebraic description, and thus benefit the advanced cryptographic protocols that employ them.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Software

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3