Key Recovery, Universal Forgery, and Committing Attacks against Revised Rocca: How Finalization Affects Security

Author:

Takeuchi Ryunouchi,Todo Yosuke,Iwata Tetsu

Abstract

This paper examines the security of Rocca, an authenticated encryption algorithm designed for Beyond 5G/6G contexts. Rocca has been revised multiple times in the initialization and finalization for security reasons. In this paper, we study how the choice of the finalization affects the overall security of Rocca, covering key recovery, universal forgery, and committing attacks. We show a key-recovery attack faster than the exhaustive key search if a linear key mixing is used in the finalization. We also consider the ideally secure keyed finalization, which prevents key-recovery attacks. We show that, in the nonce-misuse setting, this does not prevent universal forgery with a practical data complexity, although the time complexity is high. Our result on committing attacks shows that none of the versions of Rocca considered in this paper is secure. We complete our analysis by presenting a concrete example of colliding inputs against the designers’ latest version of Rocca in the FROB setting, a strong notion of the committing security. Our analysis significantly improves the key committing attack against Rocca shown in ToSC 2024(1)/FSE 2024.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3