Author:
Delaune Stéphanie,Derbez Patrick,Vavrille Mathieu
Abstract
In this paper we describe a new tool to search for boomerang distinguishers. One limitation of the MILP model of Liu et al. is that it handles only one round for the middle part while Song et al. have shown that dependencies could affect much more rounds, for instance up to 6 rounds for SKINNY. Thus we describe a new approach to turn an MILP model to search for truncated characteristics into an MILP model to search for truncated boomerang characteristics automatically handling the middle rounds. We then show a new CP model to search for the best possible instantiations to identify good boomerang distinguishers. Finally we systematized the method initiated by Song et al. to precisely compute the probability of a boomerang. As a result, we found many new boomerang distinguishers up to 24 rounds in the TK3 model. In particular, we improved by a factor 230 the probability of the best known distinguisher against 18-round SKINNY-128/256.
Publisher
Universitatsbibliothek der Ruhr-Universitat Bochum
Subject
Applied Mathematics,Computational Mathematics,Computer Science Applications,Software
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献