Methodology for Efficient CNN Architectures in Profiling Attacks

Author:

Zaid Gabriel,Bossuet Lilian,Habrard Amaury,Venelli Alexandre

Abstract

The side-channel community recently investigated a new approach, based on deep learning, to significantly improve profiled attacks against embedded systems. Previous works have shown the benefit of using convolutional neural networks (CNN) to limit the effect of some countermeasures such as desynchronization. Compared with template attacks, deep learning techniques can deal with trace misalignment and the high dimensionality of the data. Pre-processing is no longer mandatory. However, the performance of attacks depends to a great extent on the choice of each hyperparameter used to configure a CNN architecture. Hence, we cannot perfectly harness the potential of deep neural networks without a clear understanding of the network’s inner-workings. To reduce this gap, we propose to clearly explain the role of each hyperparameters during the feature selection phase using some specific visualization techniques including Weight Visualization, Gradient Visualization and Heatmaps. By highlighting which features are retained by filters, heatmaps come in handy when a security evaluator tries to interpret and understand the efficiency of CNN. We propose a methodology for building efficient CNN architectures in terms of attack efficiency and network complexity, even in the presence of desynchronization. We evaluate our methodology using public datasets with and without desynchronization. In each case, our methodology outperforms the previous state-of-the-art CNN models while significantly reducing network complexity. Our networks are up to 25 times more efficient than previous state-of-the-art while their complexity is up to 31810 times smaller. Our results show that CNN networks do not need to be very complex to perform well in the side-channel context.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Side-channel attacks based on attention mechanism and multi-scale convolutional neural network;Computers and Electrical Engineering;2024-10

2. Dual-Path Hybrid Residual Network for Profiled Side-Channel Analysis;IEEE Transactions on Circuits and Systems II: Express Briefs;2024-08

3. Development of a Robust CNN Model for Mango Leaf Disease Detection and Classification: A Precision Agriculture Approach;ACS Agricultural Science & Technology;2024-07-16

4. TinyPower: Side-Channel Attacks with Tiny Neural Networks;2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST);2024-05-06

5. Xoodyak Under SCA Siege;2024 27th International Symposium on Design & Diagnostics of Electronic Circuits & Systems (DDECS);2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3