Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Author:

Guo Qian,Hlauschek Clemens,Johansson Thomas,Lahr Norman,Nilsson Alexander,Schröder Robin Leander

Abstract

Well before large-scale quantum computers will be available, traditional cryptosystems must be transitioned to post-quantum (PQ) secure schemes. The NIST PQC competition aims to standardize suitable cryptographic schemes. Candidates are evaluated not only on their formal security strengths, but are also judged based on the security with regard to resistance against side-channel attacks. Although round 3 candidates have already been intensively vetted with regard to such attacks, one important attack vector has hitherto been missed: PQ schemes often rely on rejection sampling techniques to obtain pseudorandomness from a specific distribution. In this paper, we reveal that rejection sampling routines that are seeded with secretdependent information and leak timing information result in practical key recovery attacks in the code-based key encapsulation mechanisms HQC and BIKE.Both HQC and BIKE have been selected as alternate candidates in the third round of the NIST competition, which puts them on track for getting standardized separately o the finalists. They have already been specifically hardened with constant-time decoders to avoid side-channel attacks. However, in this paper, we show novel timing vulnerabilities in both schemes: (1) Our secret key recovery attack on HQC requiresonly approx. 866,000 idealized decapsulation timing oracle queries in the 128-bit security setting. It is structurally different from previously identified attacks on the scheme: Previously, exploitable side-channel leakages have been identified in the BCH decoder of a previously submitted HQC version, in the ciphertext check as well as in the pseudorandom function of the Fujisaki-Okamoto transformation. In contrast, our attack uses the fact that the rejection sampling routine invoked during the deterministic re-encryption of the decapsulation leaks secret-dependent timing information, which can be efficiently exploited to recover the secret key when HQC is instantiated with the (now constant-time) BCH decoder, as well as with the RMRS decoder of the current submission. (2) From the timing information of the constant weight word sampler in the BIKE decapsulation, we demonstrate how to distinguish whether the decoding step is successful or not, and how this distinguisher is then used in the framework of the GJS attack to derive the distance spectrum of the secret key, using 5.8 x 107 idealized timing oracle queries. We provide details and analyses of the fully implemented attacks, as well as a discussion on possible countermeasures and their limits.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3