Side Channel Attack On Stream Ciphers: A Three-Step Approach To State/Key Recovery

Author:

Kumar Satyam,Dasu Vishnu Asutosh,Baksi Anubhab,Sarkar Santanu,Jap Dirmanto,Breier Jakub,Bhasin Shivam

Abstract

Side Channel Attack (SCA) exploits the physical information leakage (such as electromagnetic emanation) from a device that performs some cryptographic operation and poses a serious threat in the present IoT era. In the last couple of decades, there have been a large body of research works dedicated to streamlining/improving the attacks or suggesting novel countermeasures to thwart those attacks. However, a closer inspection reveals that a vast majority of published works in the context of symmetric key cryptography is dedicated to block ciphers (or similar designs). This leaves the problem for the stream ciphers wide open. There are few works here and there, but a generic and systematic framework appears to be missing from the literature. Motivating by this observation, we explore the problem of SCA on stream ciphers with extensive details. Loosely speaking, our work picks up from the recent TCHES’21 paper by Sim, Bhasin and Jap. We present a framework by extending the efficiency of their analysis, bringing it into more practical terms.In a nutshell, we develop an automated framework that works as a generic tool to perform SCA on any stream cipher or a similar structure. It combines multiple automated tools (such as, machine learning, mixed integer linear programming, satisfiability modulo theory) under one umbrella, and acts as an end-to-end solution (taking side channel traces and returning the secret key). Our framework efficiently handles noisy data and works even after the cipher reaches its pseudo-random state. We demonstrate its efficacy by taking electromagnetic traces from a 32-bit software platform and performing SCA on a high-profile stream cipher, TRIVIUM, which is also an ISO standard. We show pragmatic key recovery on TRIVIUM during its initialization and also after the cipher reaches its pseudo-random state (i.e., producing key-stream).

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3