Faster Montgomery and double-add ladders for short Weierstrass curves

Author:

Hamburg Mike

Abstract

The Montgomery ladder and Joye ladder are well-known algorithms for elliptic curve scalar multiplication with a regular structure. The Montgomery ladder is best known for its implementation on Montgomery curves, which requires 5M+4S+1m+8A per scalar bit, and 6 field registers. Here (M, S,m,A) represent respectively field Multiplications, Squarings, multiplications by a curve constant, and Additions or subtractions. This ladder is also complete, meaning that it works on all input points and all scalars. Many protocols do not use Montgomery curves, but instead use prime-order curves in short Weierstrass form. These have historically been much slower, with ladders costing at least 14 multiplications or squarings per bit: 8M + 6S + 27A for the Montgomery ladder and 8M+ 6S + 30A for the Joye ladder. In 2017, Kim et al. improved the Montgomery ladder to 8M+ 4S + 12A + 1H per bit using 9 registers, where the H represents a halving. Hamburg simplified Kim et al.’s formulas to 8M+ 4S + 8A + 1H per bit using 6 registers. Here we present improved formulas which compute the Montgomery ladder on short Weierstrass curves using 8M+ 3S + 7A per bit, and requiring 6 registers. We also give formulas for the Joye ladder that use 9M+3S+7A per bit, requiring 5 registers. One of our new formulas supports very efficient 4-way vectorization. We also discuss curve invariants, exceptional points, side-channel protection and how to set up and finish these ladder operations. Finally, we show a novel technique to make these ladders complete when the curve order is not divisible by 2 or 3, at a modest increase in cost. A sample implementation of these techniques is given in the supplementary material, also posted at https://github.com/bitwiseshiftleft/ladder_formulas

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-latency Elliptic Curve Scalar Multiplication Accelerator on FPGA;2024 9th International Conference on Integrated Circuits, Design, and Verification (ICDV);2024-06-06

2. Montgomery curve arithmetic revisited;Journal of Cryptographic Engineering;2024-05-13

3. Lightweight Architecture for Elliptic Curve Scalar Multiplication over Prime Field;Electronics;2022-07-17

4. Small scalar multiplication on Weierstrass curves using division polynomials;Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography];2022-06

5. Survey on performance and security problems of countermeasures for passive side-channel attacks on ECC;Journal of Cryptographic Engineering;2021-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3