Higher-Order Lookup Table Masking in Essentially Constant Memory

Author:

Valiveti Annapurna,Vivek Srinivas

Abstract

Masking using randomised lookup tables is a popular countermeasure for side-channel attacks, particularly at small masking orders. An advantage of this class of countermeasures for masking S-boxes compared to ISW-based masking is that it supports pre-processing and thus significantly reducing the amount of computation to be done after the unmasked inputs are available. Indeed, the “online” computation can be as fast as just a table lookup. But the size of the randomised lookup table increases linearly with the masking order, and hence the RAM memory required to store pre-processed tables becomes infeasible for higher masking orders. Hence demonstrating the feasibility of full pre-processing of higher-order lookup table-based masking schemes on resource-constrained devices has remained an open problem. In this work, we solve the above problem by implementing a higher-order lookup table-based scheme using an amount of RAM memory that is essentially independent of the masking order. More concretely, we reduce the amount of RAM memory needed for the table-based scheme of Coron et al. (TCHES 2018) approximately by a factor equal to the number of shares. Our technique is based upon the use of pseudorandom number generator (PRG) to minimise the randomness complexity of ISW-based masking schemes proposed by Ishai et al. (ICALP 2013) and Coron et al. (Eurocrypt 2020). Hence we show that for lookup table-based masking schemes, the use of a PRG not only reduces the randomness complexity (now logarithmic in the size of the S-box) but also the memory complexity, and without any significant increase in the overall running time. We have implemented in software the higher-order table-based masking scheme of Coron et al. (TCHES 2018) at tenth order with full pre-processing of a single execution of all the AES S-boxes on a ARM Cortex-M4 device that has 256 KB RAM memory. Our technique requires only 41.2 KB of RAM memory, whereas the original scheme would have needed 440 KB. Moreover, our 8-bit implementation results demonstrate that the online execution time of our variant is about 1.5 times faster compared to the 8-bit bitsliced masked implementation of AES-128.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Table Re-Computation Based Low Entropy Inner Product Masking Scheme;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3