Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay Functions and Modular Inversion

Author:

Sreedhar Kavya,Horowitz Mark,Torng Christopher

Abstract

The extended GCD (XGCD) calculation, which computes Bézout coefficients ba, bb such that ba ∗ a0 + bb ∗ b0 = GCD(a0, b0), is a critical operation in many cryptographic applications. In particular, large-integer XGCD is computationally dominant for two applications of increasing interest: verifiable delay functions that square binary quadratic forms within a class group and constant-time modular inversion for elliptic curve cryptography. Most prior work has focused on fast software implementations. The few works investigating hardware acceleration build on variants of Euclid’s division-based algorithm, following the approach used in optimized software. We show that adopting variants of Stein’s subtraction-based algorithm instead leads to significantly faster hardware. We quantify this advantage by performing a large-integer XGCD accelerator design space exploration comparing Euclid- and Stein-based algorithms for various application requirements. This exploration leads us to an XGCD hardware accelerator that is flexible and efficient, supports fast average and constant-time evaluation, and is easily extensible for polynomial GCD. Our 16nm ASIC design calculates 1024-bit XGCD in 294ns (8x faster than the state-of-the-art ASIC) and constant-time 255-bit XGCD for inverses in the field of integers modulo the prime 2255−19 in 85ns (31× faster than state-of-the-art software). We believe our design is the first high-performance ASIC for the XGCD computation that is also capable of constant-time evaluation. Our work is publicly available at https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FELIX: FPGA-Based Scalable and Lightweight Accelerator for Large Integer Extended GCD;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2024-09

2. Cryptanalysis of Algebraic Verifiable Delay Functions;Lecture Notes in Computer Science;2024

3. Fast Hardware Implementation for Extended GCD of Large Numbers in Redundant Representation;IEEE Transactions on Circuits and Systems II: Express Briefs;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3