Information Theory-based Evolution of Neural Networks for Side-channel Analysis

Author:

Acharya Rabin Y.,Ganji Fatemeh,Forte Domenic

Abstract

Profiled side-channel analysis (SCA) leverages leakage from cryptographic implementations to extract the secret key. When combined with advanced methods in neural networks (NNs), profiled SCA can successfully attack even those cryptocores assumed to be protected against SCA. Despite the rise in the number of studies devoted to NN-based SCA, a range of questions has remained unanswered, namely: how to choose an NN with an adequate configuration, how to tune the NN’s hyperparameters, when to stop the training, etc. Our proposed approach, “InfoNEAT,” tackles these issues in a natural way. InfoNEAT relies on the concept of neural structure search, enhanced by information-theoretic metrics to guide the evolution, halt it with novel stopping criteria, and improve time-complexity and memory footprint. The performance of InfoNEAT is evaluated by applying it to publicly available datasets composed of real side-channel measurements. In addition to the considerable advantages regarding the automated configuration of NNs, InfoNEAT demonstrates significant improvements over other approaches for effective key recovery in terms of the number of epochs (e.g.,x6 faster) and the number of attack traces compared to both MLPs and CNNs (e.g., up to 1000s fewer traces to break a device) as well as a reduction in the number of trainable parameters compared to MLPs (e.g., by the factor of up to 32). Furthermore, through experiments, it is demonstrated that InfoNEAT’s models are robust against noise and desynchronization in traces.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3