Differential Fault Attacks on Deterministic Lattice Signatures

Author:

Groot Bruinderink Leon,Pessl Peter

Abstract

In this paper, we extend the applicability of differential fault attacks to lattice-based cryptography. We show how two deterministic lattice-based signature schemes, Dilithium and qTESLA, are vulnerable to such attacks. In particular, we demonstrate that single random faults can result in a nonce-reuse scenario which allows key recovery. We also expand this to fault-induced partial nonce-reuse attacks, which do not corrupt the validity of the computed signatures and thus are harder to detect.Using linear algebra and lattice-basis reduction techniques, an attacker can extract one of the secret key elements after a successful fault injection. Some other parts of the key cannot be recovered, but we show that a tweaked signature algorithm can still successfully sign any message. We provide experimental verification of our attacks by performing clock glitching on an ARM Cortex-M4 microcontroller. In particular, we show that up to 65.2% of the execution time of Dilithium is vulnerable to an unprofiled attack, where a random fault is injected anywhere during the signing procedure and still leads to a successful key-recovery.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3