The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations

Author:

Picek Stjepan,Heuser Annelie,Jovic Alan,Bhasin Shivam,Regazzoni Francesco

Abstract

We concentrate on machine learning techniques used for profiled sidechannel analysis in the presence of imbalanced data. Such scenarios are realistic and often occurring, for instance in the Hamming weight or Hamming distance leakage models. In order to deal with the imbalanced data, we use various balancing techniques and we show that most of them help in mounting successful attacks when the data is highly imbalanced. Especially, the results with the SMOTE technique are encouraging, since we observe some scenarios where it reduces the number of necessary measurements more than 8 times. Next, we provide extensive results on comparison of machine learning and side-channel metrics, where we show that machine learning metrics (and especially accuracy as the most often used one) can be extremely deceptive. This finding opens a need to revisit the previous works and their results in order to properly assess the performance of machine learning in side-channel analysis.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Side-channel attacks based on attention mechanism and multi-scale convolutional neural network;Computers and Electrical Engineering;2024-10

2. Unveiling Alzheimer’s Disease Early: A Comprehensive Review of Machine Learning and Imaging Techniques;Archives of Computational Methods in Engineering;2024-09-06

3. PACAS: A Privacy-Aware Smart Camera System;2024 IEEE Cloud Summit;2024-06-27

4. A deep learning based solution for data disproportionproblem in side channel attacks using intelligent sensors;Measurement: Sensors;2024-06

5. Tolerance Evaluation Against Deep Learning Side-Channel Attack on AES in Automotive Microcontroller With Uncertain Leakage Model;2024 IEEE Joint International Symposium on Electromagnetic Compatibility, Signal & Power Integrity: EMC Japan / Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Japan/APEMC Okinawa);2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3