cuZK: Accelerating Zero-Knowledge Proof with A Faster Parallel Multi-Scalar Multiplication Algorithm on GPUs

Author:

Lu Tao,Wei Chengkun,Yu Ruijing,Chen Chaochao,Fang Wenjing,Wang Lei,Wang Zeke,Chen Wenzhi

Abstract

Zero-knowledge proof is a critical cryptographic primitive. Its most practical type, called zero-knowledge Succinct Non-interactive ARgument of Knowledge (zkSNARK), has been deployed in various privacy-preserving applications such as cryptocurrencies and verifiable machine learning. Unfortunately, zkSNARK like Groth16 has a high overhead on its proof generation step, which consists of several time-consuming operations, including large-scale matrix-vector multiplication (MUL), number-theoretic transform (NTT), and multi-scalar multiplication (MSM). Therefore, this paper presents cuZK, an efficient GPU implementation of zkSNARK with the following three techniques to achieve high performance. First, we propose a new parallel MSM algorithm. This MSM algorithm achieves nearly perfect linear speedup over the Pippenger algorithm, a well-known serial MSM algorithm. Second, we parallelize the MUL operation. Along with our self-designed MSM scheme and well-studied NTT scheme, cuZK achieves the parallelization of all operations in the proof generation step. Third, cuZK reduces the latency overhead caused by CPU-GPU data transfer by 1) reducing redundant data transfer and 2) overlapping data transfer and device computation. The evaluation results show that our MSM module provides over 2.08x (up to 2.94x) speedup versus the state-of-the-art GPU implementation. cuZK achieves over 2.65x (up to 4.86x) speedup on standard benchmarks and 2.18× speedup on a GPU-accelerated cryptocurrency application, Filecoin.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating zk-SNARK with Group and Zone Optimization on GPU;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

2. BSTMSM: A High-Performance FPGA-based Multi-Scalar Multiplication Hardware Accelerator;2023 International Conference on Field Programmable Technology (ICFPT);2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3