Faster Montgomery multiplication and Multi-Scalar-Multiplication for SNARKs

Author:

Botrel Gautam,El Housni Youssef

Abstract

The bottleneck in the proving algorithm of most of elliptic-curve-based SNARK proof systems is the Multi-Scalar-Multiplication (MSM) algorithm. In this paper we give an overview of a variant of the Pippenger MSM algorithm together with a set of optimizations tailored for curves that admit a twisted Edwards form. We prove that this is the case for SNARK-friendly chains and cycles of elliptic curves, which are useful for recursive constructions. Our contribution is twofold: first, we optimize the arithmetic of finite fields by improving on the well-known Coarsely Integrated Operand Scanning (CIOS) modular multiplication. This is a contribution of independent interest that applies to many different contexts. Second, we propose a new coordinate system for twisted Edwards curves tailored for the Pippenger MSM algorithm.Accelerating the MSM over these curves is critical for deployment of recursive proof< systems applications such as proof-carrying-data, blockchain rollups and blockchain light clients. We implement our work in Go and benchmark it on two different CPU architectures (x86 and arm64). We show that our implementation achieves a 40-47% speedup over the state-of-the-art implementation (which was implemented in Rust). This MSM implementation won the first place in the ZPrize competition in the open division “Accelerating MSM on Mobile” and will be deployed in two real-world applications: Linea zkEVM by ConsenSys and probably Celo network.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating Multi-Scalar Multiplication for Efficient Zero Knowledge Proofs with Multi-GPU Systems;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

2. zk-Bench: A Toolset for Comparative Evaluation and Performance Benchmarking of SNARKs;Lecture Notes in Computer Science;2024

3. Advancing Federated Learning through Verifiable Computations and Homomorphic Encryption;Entropy;2023-11-16

4. Batch point compression in the context of advanced pairing-based protocols;Applicable Algebra in Engineering, Communication and Computing;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3