Abstract
Over the past decades, several tools have been developed for food pathogen detection, including proteomics, metabolomics, immunological, biosensor, and nucleic acid-based approaches. Although these techniques are reliable and precise, they are time-consuming, technically challenging, and costly. Hence, it is necessary to develop rapid techniques for food pathogen detection, which can be performed at the household level. DNAFoil mechanism is a portable, completely self-administered, on-site DNA test that does not need expensive instru-ments or settings to confirm food pathogen detection in as little as 30 min. DNAFoil was used successfully for detecting food contamination and adulteration with pork derivatives (down to 0.1%) and vegetal components (down to 0.01%), respectively. In this study, initial validation experiments of DNAFoil were investigated to detect Listeria monocytogenes and Salmonella contamination. To confirm the specificity of the proposed method toward Salmonella, 18 different Salmonella strains, 6 non-Salmonella bacteria, and 2 fungi were investigated; also, in the case of Listeria monocytogenes, five bacterial strains, two fungi, and Listeria monocytogenes were investigated. The results stated that the Swiss Decode Salmonella and L. monocytogenes solutions can detect as few as 1 and 10 copies of DNA per microliter, respectively. The results also showed that the accuracy of our method ranges between 92 and 100%, while the precision value ranged between 88 and 100%. In terms of quality control applicability, DNAFoil Salmonella and Listeria monocytogenes reactions could be visually detected with the naked eye using a lateral flow strip, which could be used for in-place quality control during manufacturing and also can be used for more lab tests. In terms of cost, DNAFoil is usually much cheaper than the traditional detection methods. Therefore, DNAFoil is proposed as a promising and universal detection technology for food pathogens.