Formulation and optimization of astaxanthin nanoemulsions with marine phospholipids derived from large yellow croaker (Larimichthys crocea) roe

Author:

Huang Luyao,Zhang Lingyun,Li Ruifen,Liang Peng

Abstract

The aim of this work was to investigate the emulsifying capacity of marine phospholipids derived from large yellow croaker roe (LYCRPLs). Initially, conditions for preparing astaxanthin (1% w/w) nanoemulsions with LYCRPLs were optimized based on single-factor experiments, including homogenization pressure, homogenization cycle, emulsifier concentration and corn oil concentration via the response surface methodology. The optimal homogenization pressure was 60 MPa, the optimal number of homogenization cycles was nine, the optimal emulsifier concentration was 4.7%, and the optimal oil concentration was 20%. Under these conditions, the stability, particle size and polydispersity index of nanoemulsions were 0.018 ± 0.0016, 247 ± 4.5 nm and 0.215±0.019, respectively. The droplets of nanoemulsions were characterized by transmission electron microscopy, which revealed that all the droplets were more or less spherical and nonaggregated. In addition, the storage experiments indicated that the nanoemulsions were stable at different temperatures. Therefore, LYCRPLs could be explored as carriers for the delivery of insoluble bioactive compounds in the food industry.

Publisher

Codon Publications

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3