Molecular docking and in vivo studies of liquiritin against acute myocardial infarction via TLR4/MyD88/NF-κB signaling

Author:

Zhou Peng,Shen An-lu,Liu Pei-pei,Wang Shu-shu,Wang Liang

Abstract

Licorice (Glycyrrhiza glabra L.) is an essential herb in Chinese medicine, as well as a common ingredient in health foods and natural sweeteners. Liquiritin, the primary constituent of licorice, possesses a wide range of pharmacological and biological properties. This research aims to study the protective mechanism of liquiritin in the myocardium. The potential therapeutic efficacy of liquiritin against acute myocardial infarction (AMI) was tested using molecular docking and verified using an AMI rat model caused by the ligation of the LAD coronary artery. Molecular docking between liquiritin and toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) was predicted using SystemsDock. Then, for experimental validation, in vivo studies were employed. Rats with the AMI model established by ligation of left anterior descending coronary artery were divided into four groups—sham group, model group, captopril group, and liquiritin group. LVSP, LVEDP, +dp/dtmax, and -dp/ dtmax were detected and analyzed. HE and Masson staining were used to observe the pathological changes. The protein expressions of TLR4, MyD88, and nuclear factorκB p65 (NF-κB p65) were detected by Western blotting. Molecular docking showed that liquiritin may act on the TLR4 and MyD88, and, therefore, liquiritin was pre-dicted to exert anti-inflammatory effects by regulating the TLR4/MyD88 signaling pathway. Liquiritin improved LVSP, +dp/dtmax, -dp/dtmax, and LVEDP levels, and alleviated pathological changes and cardiac fibrosis. Further study found that liquiritin could decrease the overexpression of TLR4, MyD88, and NF-κB, which validated the molecular docking study. Hence, liquiritin ameliorates AMI by reducing inflammation, and blocking TLR4/ MyD88/NF-κB signaling. These results indicate that liquiritin as a potential compound could alleviate AMI and broaden its application.

Publisher

Codon Publications

Subject

Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3