Impact of high hydrostatic pressure on the single nucleotide polymorphism of stress-related dnaK, hrcA, and ctsR in the Lactobacillus strains

Author:

Bucka-Kolendo JoannaORCID,Sokołowska BarbaraORCID

Abstract

Lactic acid bacteria (LAB) are widespread in environments and can either have a positive impact because their ability to survive in harsh conditions and influence the product (probiotic properties, change of structure-EPS [exopolysaccharides], etc.), or a negative impact, (so not needed) because of their spoilage ability (beer, juices). High hydrostatic pressure (HHP), one of the non-thermal preservation methods used in the food industry, can force the LAB to activate the adaptative mechanisms. Under pressurization, the changes in the bacteria cells can occur at the transcriptional or translational level. This study evaluated the HHP on the single nucleotide polymorphism (SNP) changes in three genes, dnaK, ctsR, and hrcA, related to the stress-response mechanism in LAB. The correlation between the DNA polymorphism and the gene expression under HHP stress was assessed. The applied pressure of 300 MPa resulted in a low ratio of nonsynonymous substitutions to the synonymous substitutions (0 to 1.12), and a lower number of mutations was observed for pressurized strains (from 6 in hrcA to 11 in dnaK) than in controlled (from 3 in ctsR to 92 in hrcA). In all pressurized strains, the expression of genes was observed, whereas, in control strains, the gene expression was detected in three out of five strains. Although there was a noticeable change in stress-related gene expression after HHP, there was no correlation with SNPs. At the same time, with a high frequency of synonymous changes in nucleotide and high diversity for hrcA and dnaK, a very low diversity was found in ctsR sequences. The LAB strains stress response mechanisms are much more complex. The study requires information on the general mechanism and changes in the membranes’ composition, proteome changes, and gene expression patterns. The mutations in genes related to stress can have important implications for the strains’ fitness effect and adaptive ability of LAB strains, especially considering their food industry implication where the HHP techniques are used.

Publisher

Codon Publications

Subject

Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3