Response of growth, photosynthesis, dry matter partition and roots to combined nitrogen–potassium stress in cucumber

Author:

Mao Hanping,Liu Yong,Wang Yafei,Ma Guoxin,Wang Bin,Du Xiaoxue,Shi Qiang,Ni Jiheng

Abstract

In order to improve the yield of cucumber and ensure food safety by investigating the response of cucumber to nutrient stress, especially compound stress, gas-exchange and growth parameters, biomass, and root development were measured and compared. The results showed that compared with control (CK), different treatments had different effects on these parameters, and under short-term nitrogen (N) or potassium (K+) stress, the development of lateral roots and root hair was promoted. The research on the response of cucumber to nutrient stress provided a basis for establishing reasonable irrigation strategies as well as improvement of fertilizer utilization rate and cucumber yield, which was of great significance for maintaining national food security. In addition, this was beneficial to reveal the stress response mechanism of crops under NK stress and conduct in-depth research on the phenotypic information characteristics of cucumber under compound stress. It provided a theoretical basis for the subsequent construction of a comprehensive evaluation system for greenhouse cucumber health status.

Publisher

Codon Publications

Subject

Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3