TFAP2C exacerbates psoriasis-like inflammation by promoting Th17 and Th1 cells activation through regulating TEAD4 transcription

Author:

Huanhuan Zhang ,Cuimin Ren ,Qiang Liu ,Qing Wang ,Dahu Wang

Abstract

Background: Psoriasis is one of the chronic and autoimmune skin diseases. It is important to uncover the mechanisms underlying the psoriasis. Transcription factor activator protein (TFAP-2) gamma, also known as AP2-gamma, is a protein encoded by the TFAP2C gene. Immunemediated pathophysiological processes could be linked to psoriasis, but the mechanism is still unclear. Therefore, to date the cause of psoriasis has not been understood completely. Materials and methods: Psoriasis is a complex disease triggered by genetic, immunological, and environmental stimuli. Keratinocytes play an important role in both initiation and maintenance phases of psoriasis. A psoriatic keratinocyte model was established by stimulating high sensitivity of human epidermal keratinocytes (HaCaT) to topoisomerase inhibitor cell lines using the accumulation of M5 cytokines comprising interleukin (IL)-17A, IL-22, oncostatin M, IL-1α, and tumor necrosis factor-α (TNF-α). The TFAP2C and transcriptional enhanced associate domain 4 (TEAD4) genes expression was evaluated by reverse transcription-quantitative polymerase chain reaction. Western blot analysis was used to examine protein expression. Cell viability (quantitative) of keratinocytes, including cytotoxicity, proliferation, and cell activation, was evaluated by the MTT assay. The relative percentage values of interleukin (IL)-17a, interferon gamma, and IL-4+ cells were measured by flow cytometry. Accordingly, chromatin immunoprecipitation and luciferase reporter assays were applied to evaluate the binding affinity of TFAP2C and TEAD4 promoter. Results: Level of the TFAP2C gene was elevated in the lesional skin of psoriasis patients. On the other hand, silencing of the TFAP2C gene suppressed the proliferation and inflammatory response in M5-induced keratinocytes. In addition, inhibition of TFAP2C alleviated imiqui-mod (IMQ)-induced skin injury in mice model. We also observed that suppression of TFAP2C inhibited the activation of T-helper 17 (Th17) and Th1 cells in IMQ-induced mice model. Mechanically, TFAP2C promoted TEAD4 transcriptional activation. Conclusion: TFAP2C exacerbated psoriasis-like inflammation by increasing the activation of Th17 and Th1 cells by regulating TEAD4 transcription. This finding clearly indicated that TFAP2C could be considered a valuable biomarker for the prevention and treatment for psoriasis.

Publisher

Codon Publications

Subject

General Medicine,Immunology and Allergy,Immunology,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3