SIRT3 improves alveolar epithelial cell damage caused by bronchopulmonary dysplasia through deacetylation of FOXO1

Author:

Zang Lili,Chi Jinghan,Bi Sitong,Tao Yi,Wang Rong,Li Lihua

Abstract

Background: Bronchopulmonary dysplasia (BPD) is a serious and long-term lung condition commonly observed in premature babies. Sirtuin 3 (SIRT3) has been reported to reduce pulmonary injury and pulmonary fibrosis. Objective: The present study investigated the specific role of SIRT3 in BPD by establishing hyperoxia-induced BPD rat and cell models. Hematoxylin and eosin staining was used to observe pathological changes in lung tissues. Materials and methods: The expression levels of SIRT3 and forkhead box protein O1 (FOXO1), as well as its acetylation levels, were detected in hyperoxia-induced lung tissues and cells by Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Levels of reactive oxygen species, superoxide dismutase, and malondialdehyde were assessed by using biochemical kits. Following SIRT3 overexpression, the levels of inflammatory cytokines were assessed by RT-qPCR. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nickend labeling (TUNEL) and Western blot analysis. Upon FOXO1 knockout, cell inflammation, oxidative stress and apoptosis were evaluated again. Results: Compared to the control group, the SIRT3 and FOXO1 expression levels were decreased and the FOXO1 acetylation levels were increased in hyperoxia-induced lung tissues and cells. In addition, SIRT3 reduced hyperoxia-induced inflammation, oxidative stress, and apoptosis in A549 cells, and inhibited FOXO1 acetylation to activate FOXO1. However, FOXO1 knockdown reversed the effects of SIRT3 overexpression in hyperoxia-induced A549 cells. Conclusion: SIRT3 relieved alveolar epithelial cell damage caused by BPD via deacetylation of FOXO1, suggesting that SIRT3 could be a therapeutic target in BPD.

Publisher

Codon Publications

Subject

General Medicine,Immunology and Allergy,Immunology,Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3