Progressive quality estimation of oyster mushrooms using neural network–based image analysis

Author:

Sarkar Tanmay,Mukherjee Alok,Chatterjee Kingshuk,Smaoui Slim,Pati Siddhartha,Shariati Mohammad Ali

Abstract

We have developed an artificial intelligence–based quality prediction model for oyster mushroom samples in this work. The proposed model tends to predict the progressively deteriorating quality of the samples in terms of predicted Hedonic number, which is adjudged as one of the most reliable scales of raw fruit quality assessment parameters. The present scheme attempts to continuously assess the quality of mushrooms by judging the extent of deterioration of the sample images; instead of discrete classification asserting only the edibility or non-edibility of the samples. Thus, the extent of the freshness of any test sample could also be approximated using the predicted Hedonic number from the model. The proposed scheme uses an artificial neural network to develop the estimator. The simplicity of analysis of the scheme and high accuracy of prediction of freshness allow for basic screening of the samples without requiring a panel of experts to judge the same, which is a difficult task, especially under this pandemic circumstance. Besides, implementing the proposed algorithm in designing possible mobile-based application software would widen its applicability in a practical scenario.

Publisher

Codon Publications

Subject

Agronomy and Crop Science,Food Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3