Cortex Mori extract inhibits migration and invasion of lung adenocarcinoma cells by blocking RECQL4-induced NF-κB and ERK signaling pathways

Author:

Qin Li ,Wei Enyao,Wenbin Zhang ,Feng Zhang

Abstract

Lung adenocarcinoma (LUAC) is one of the usual tumors of the lung with high mortality rate. RecQ-like helicase 4 (RECQL4) gene has been discovered to take part in the progression of different cancers by undertaking as an oncogene, and is relevant with poor prognosis of LUAC. Cortex Mori (CM) extract has been investigated to affect cellular progress to regulate different diseases. However, the detailed functioning of RECQL4 and CM extract, as well as their regulatory mechanisms in LUAC, has not been illustrated. The purpose of the present study was to probe the impact of RECQL4 and CM extract on progression of LUAC. The expression of RECQL4 in LUAC was assessed by The Cancer Genome Atlas (TCGA) database. The mRNA expression of RECQL4 was examined by real-time quantitative polymerase chain reaction. The protein expressions (epithelial–mesenchymal transition [EMT] process, nuclear factor kappa B [NF-κB] and extracellular signal-regulated kinase [ERK] signaling pathways-related proteins) were determined by Western blot analysis. The cell proliferation was tested through cell counting kit-8 assay. Cell migration and invasion was affirmed by wound-healing and transwell assays. The cell senescence was assessed through senescence-associated beta-galactosidase staining. The cell cycle was inspected by flow cytometry. Our findings demonstrated that RECQL4 exhibited higher expression in LUAC tissues and cell lines. Through functional experiments, we found that RECQL4 facilitated cell proliferation, migration, and invasion as well as EMT progression. In addition, RECQL4 relieved cell cycle arrest and cell senescence. Moreover, RECQL4 activated NF-κB and ERK signaling pathways by enhancing phospho(p)-p65–p65 and p-ERK–ERK levels in LUAC. CM extract exhibited antitumor effects in LUAC, and blocked RECQL4-induced NF-κB and ERK signaling pathways. Our results manifested that CM extract inhibited migration and invasion of LUAC cells by blocking RECQL4-induced NF-κB and ERK signaling pathways. This result could provide a promising therapeutic strategy for LUAC.

Publisher

Codon Publications

Subject

Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3