Survey of immunopharmacological effects of botulinum toxin in cell signaling of bronchial smooth muscle cells in allergic asthma

Author:

Cheng Chao,Mehrabi Nasab Entezar,Athari Seyyed Shamsadin

Abstract

Background: Asthma is a lung disease that has influenced more than 350 million people worldwide. Airway smooth muscle (ASM) spasm leads to airway hyperresponsiveness (AHR) and bronchial obstruction, which are clinical manifestations of an asthma attack. Botulinum toxin (BTX) is a bacteria toxin that acts as muscle relaxant and may have therapeutic effects on AHR and asthma. Objective: In this study, the effect of BTX on AHR and related gene expressions was evaluated. Material and Methods: An asthma mice model was developed which was treated with BTX in two ways: intranasally (IN) and via nebulization (N) (0.01, 0.1, and 1 U/mL and 10 U/mL, respectively) on days 25, 27 and 29. AHR was evaluated on days 24, 26, 28, and 30, and gene expressions were evaluated for TrkA, TrkB, M1–M5, α7nAChR, TNF-α, and extracellular signal-regulated kinase 2 (ERK2) proteins. For histopathology of the lungs, perivascular and peribronchial inflammation, production of mucus, and goblet cell hyperplasia were studied. Results: On day 24, treatment with BTX (for all doses) had no significant effect on AHR, but on days 26 and 28, AHR was decreased and this continued up to day 30 for all treated groups. Treatment with BTX had no significant effect on the gene expressions of TrkA, TrkB, M1–M5, α7nAChR, TNF-α, and ERK2 proteins, perivascular inflammation, peribronchial inflammation, hyperplasia of the goblet cell and production of mucus. Besides, mice administered with 10 mg/mL BTX perished. The BTX therapy controlled asthma attacks by decreasing AHR and relaxation of ASMs. Conclusion: However, BTX had no significant effect on airway inflammation and production of mucus. While using BTX, it is necessary to prescribe safe doses in order to prevent adverse reactions.

Publisher

Codon Publications

Subject

General Medicine,Immunology and Allergy,Immunology,Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3