Downregulation of FPR1 abates lipopolysaccharide-induced inflammatory injury and apoptosis by upregulating MAPK signaling pathway in murine chondrogenic ATDC5 cells

Author:

Chen Hongtao,Zhang Li

Abstract

Background and objective: Osteoarthritis is the most common chronic osteoarthrosis disease. There are complex factors that lead to osteoarthritis. Therefore, it is essential to investigate the molecular mechanism of osteoarthritis, especially the mechanism of articular cartilage degeneration. In this study, the mechanism of FPR1 (formyl peptide receptor 1) in LPS (lipopolysaccharide) induced chondrogenic cell ATDC5 was investigated.Materials and methods: We employed real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay to analyze the expression level of FPR1 in ATDC5 cell linesinduced by LPS at 0, 2.5, 5, and 10 μg/mL concentrations. Then we constructed the FPR1 knockdown plasmid to transfect the LPS-ATDC5. MTT assay was used to test cell viability in control, LPS, LPS+shNC and LPS+shFPR1 groups. ELISA and RT-qPCR assay were employed to examine the TNF-α (tumor necrosis factor-α)、IL-6 and IL-1β expression level. Flow cytometry and western blot assay were employed to analyze the apoptosis of LPS-ATDC5. Finally, we utilized the western blot assay to text related protein expression level of MAPK (mitogen-activated protein kinase) signaling pathway.Results: In this study, we found the expression level of FPR1 was increased in LPS-ATDC5, downregulation of FPR1 improves the survival rate and alleviates inflammatory response of LPS-ATDC5. Meanwhile, downregulation of FPR1 alleviates apoptosis of LPS-ATDC5. Finally, downregulation of FPR1 inhibits the MAPK signal pathway.Conclusion: Present study revealed that FPR1 was highly expressed in LPS-induced chondrocytes ATDC5, and the downregulation of FPR1 abated the inflammatory response and apoptosis of LPS-ATDC5 cells by regulating the MAPK signaling pathway.

Publisher

Codon Publications

Subject

General Medicine,Immunology and Allergy,Immunology,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3