Morphogenesis of Hollow Bulbous Gypsum Structures Along a Brine Spring in Northeast Alberta

Author:

Broughton Paul L.1

Affiliation:

1. Broughton and Associates, P.O. Box 6976, Calgary, Alberta T2P 2G2, Canada

Abstract

Abstract The stromatolite tufa mound at La Saline Lake developed along the Athabasca River Valley in northeast Alberta consists of a 30 m-high structure with a multi-meter thick caprock of stratified gypsum. The gypsum caprock developed when the meteoric-charged groundwater channeled along shallowly buried Upper Devonian limestone was redirected deeper and encountered anhydrite beds of the Middle Devonian Prairie Evaporite Formation, only 175–200 m below. Discharge of the sulfate-saturated brine from the central vent of the gypsum caprock eventually ceased and the flow was redirected to the western lakefront bank of the tufa mound. This active brine spring, characterized by total dissolved solids level of ∼79,000 mg/L, is channeled along a 25 m gully toward La Saline Lake. The bottom sediment in each of the interconnected brine pools along the gully consists of a 2–4 cm-thick calcite-gypsum thrombolite and an overlying gypsum crust. This sulfate crust developed as densely packed arrays of hollow botryoidal to hemispheroidal and bulbous gypsum protuberances, each 0.5–1.5 cm long, that extend upward into the brine. This is the first documented example of bulbous protuberances of gypsum that developed within brine pools with hollow interiors. The unusual hollowness of these bulbous gypsum protuberances resulted from the rapid encasement of gas bubbles that ascended from the underlying thrombolite ooze and were trapped within the overlying microbial mats and meshwork of gypsum crystallites on the surface of the bottom pool sediment. Nanoscale biomineralization of gypsum developed along the parallel arrays of microbial stalks within the enveloping mat, resulting in a meshwork of parallel aligned crystallites that encased the surfaces of the trapped bubbles. Continued abiotic gypsum precipitation transitioned the abiotic crystallites into enlarged needle-form crystallites distributed as parallel arrays along curvilinear growth surface laminae. Sufficient rigidity on the bubble surfaces precluded implosion-collapse or detachment. Strontium adsorption widely stabilized the acicular crystals, inhibiting complete coalescence as gypsum spar.

Publisher

Mineralogical Association of Canada

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3