Experimental study of the differentiation of gabbro-syenite melt under superliquidus conditions

Author:

Bezmen Nikolay I.1,Gorbachev Pavel N.1,Seltmann Reimar2

Affiliation:

1. Institute of Experimental Mineralogy, RAS; St. Academician Osipyan, 4, Chernogolovka, Moscow Region, 142432, Russia

2. Centre for Russian and Central EurAsian Earth Sciences (CERCAMS), Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Abstract

ABSTRACTIn this work we present the results of experimental interaction of gabbro-syenite melt, corresponding to the average composition of Northern Timan rocks, with a complex hydrogen-containing fluid. The composition of the magmatic fluid was controlled to be close to natural conditions using a special cell in a high gas-pressure vessel. Under superliquidus conditions, the initial melt exsolves into melts of different composition, forming contrast, cryptic, and rhythmic melt stratifications. The experimental results agree with natural data in the petrochemical diagram. It follows from our experimental data that fluid-saturated melts in magmatic chambers are completely differentiated in the liquid state. In the absence of temperature gradients in the magma, gravitational migration of nanoclusters of different densities forms flotation, sedimentation, and rhythmic types of melt stratification. Transmission electron microscopy of the glasses formed in the cell was used to study the formation of nanoclusters in a fluid-saturated superliquidus anorthosite-granite model melt. Clusters with a size of 6 nm consist of a pseudo-crystalline anorthite core surrounded by fluid-saturated shells of the melt. The migration of fluid and fluid-enriched clusters to the upper part of the magmatic chamber results in the activation, from bottom to top, of the processes of crystallization in the magma.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3