In situ observations of the transition between beryl and phenakite in aqueous solutions using a hydrothermal diamond-anvil cell

Author:

Wang Xian1,Li Jiankang2

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China

2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract

ABSTRACT Beryl and phenakite are important industrial beryllium minerals. In the hydrous melt of the BeO–Al2O3–SiO2–H2O (BASH) system, experiments using quench-type high-temperature and high-pressure equipment have revealed that the different activities of Al2O3 and SiO2 (αAl2O3 and αSiO2) are the main factors that lead to different beryllium mineral assemblages. In this study, we attempted in situ observation of the crystallization process of phenakite and beryl in an aqueous solution of the BASH system using a hydrothermal diamond-anvil cell. Experimental results indicate that phenakite and beryl can crystallize faster in this regime (i.e., 2.93–0.58 × 10−5 cm/s in length and 22.39–3.23 μm3/s in volume) than from a hydrous melt. In addition, in the phenakite and beryl crystallization, pressure–temperature conditions were greater than 467 °C and 220 MPa and 495 °C and 221 MPa, respectively, and their upper temperatures and pressures attained 845–870 °C and 500–1300 MPa. These features indicate that temperature is not the main factor that controls the stability of phenakite and beryl in the BASH system. This stability can be attributed to the diffusion of components in aqueous solution that change αSiO2 and αAl2O3 during the heating and cooling processes. During heating, αSiO2 increases while beryl is dissolving, which leads to phenakite crystallization; during cooling, αSiO2 and αAl2O3 are sufficient for the remaining beryl to recrystallize. Therefore, the transition between phenakite and beryl in the aqueous solution in the BASH system may be different during heating and cooling processes. This reasoning can explain the abundance of phenakite in miarolitic cavities and the occurrence of phenakite, rather than beryl, in hydrothermally altered pegmatites, volcanic rocks, and other beryllium-rich rocks.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3