The Release of Incidental Nanoparticles During the Weathering of Gunshot Residue in Soils of a Shooting Range in Ontario, Canada

Author:

Schindler Michael1,Weatherhead Keegan2,Mantha Haley2

Affiliation:

1. Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2

2. Department of Chemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, Canada, P3E 2C6

Abstract

Abstract Gunshot residue is emitted as fine particulate matter upon the ignition of percussion-sensitive explosives among other additives in a firearm barrel. The particulates condense from a vapor phase and contain material from the Pb-Sb-Ba-bearing primer, S-bearing gunpowder, and the Pb-bearing bullet fragments. Shooters can inhale or ingest the fine particulates which also attach to their hands, clothing, and other surfaces. Estimation of the bioavailability of the emitted toxic Pb- and Sb-bearing particulates requires detailed knowledge of their mineralogical composition and those of their weathering products. For this purpose, gunshot residue particulates have been collected from soils in front of a firing line of a shooting range in Ontario, Canada. Bulk mineralogical and chemical features of the soils have been characterized using X-ray powder diffraction, inductively coupled plasma-mass spectrometry, and scanning electron microscopy. The focused ion-beam technique has been used to extract a section containing numerous altered gunshot residue particulates from a soil grain. Subsequent transmission electron microscopy shows for the first time that gunshot residue particulates are composed of metallic δ-Pb, α-Sb, galena (PbS), and an unidentified Ba-bearing phase. Weathering of the gunshot residue particulates results in the formation of incidental nanoparticles (i.e., not purposely engineered to occur at the nanometer scale) in the form of δ-Pb, massicot, PbO, and galena. The formation and mobilization of some of these nanoparticles within the soil grain suggest that their release during the weathering of bullets and gunshot residue contributes to the release of Pb into the environment. Hydrocerussite, Pb3(CO3)2(OH)2, cerussite, PbCO3, and massicot and anglesite, PbSO4, are the major secondary Pb-phases in and around altered GSR particulates. These phases form during the weathering of metallic Pb, massicot, and galena nanoparticles in a Ca-carbonate rich environment. Secondary Sb-bearing phases are valentinite, Sb2O3, and amorphous Sb-Pb phases (Sb:Pb ratio = 2:1–4:1). The latter phases have partially replaced large proportions of the Ca-carbonates surrounding the gunshot residue particulates. The larger abundance of the amorphous Sb-Pb phases relative to valentinite suggests that their solubility most likely controls the release of Sb into the bulk soil. The SEM and TEM characterizations and chemical analyses of mineral surface coatings and the colloidal fraction of a leachate from the collected surficial soils indicate that Pb occurs predominantly in the colloidal fraction, is often associated with sulfate-bearing colloids, and is sequestered in sulfate and carbonate/hydroxide coatings.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3