Empirical Electronic Polarizabilities for Use in Refractive Index Measurements III. Structures with Short [5]Ti–O and Vanadyl Bonds

Author:

Shannon Robert D.1,Fischer Reinhard X.2

Affiliation:

1. Geological Sciences/CIRES, University of Colorado, Boulder, Colorado 80309

2. Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Str. 2, D-28359 Bremen, Germany

Abstract

ABSTRACT The electronic polarizabilities of most cations, such as Na+, Ca2+, Fe2+, Fe3+, and Zr4+, show a monotonic decrease as the cation coordination increases. However, polarizabilities of the ions [5]Ti4+, [5]V5+, and [6]V5+ show strong deviations from a regular decrease. In this paper we characterize the [5]Ti and vanadyl compounds by infrared frequencies, by the short [5]Ti4+– O, [5]V4+–O, [6]V4+–O, [5]V5+–O, and [6]V5+–O bonds and the polarizabilities of [5]Ti4+, [5]V4+, [6]V4+, [5]V5+, and [6]V5+ determined from refractive index measurements. Analysis of the structures of 18 compounds containing short [5]Ti–O bonds supports the concept of the short Ti–O bond being associated with the bond valence sum (omitting Ti) around the oxygen atom O*. The short Ti–O* bond occurs to satisfy the bond valence requirement of (O2–) of ∼2.0 vu. Plotting the [5]Ti–O* distances of 18 minerals versus the bond valence sum (BVS) around O* shows an approximately linear relationship. Extrapolation to BVS = 0 yields a minimum distance of 1.65 Å. The mean value is 1.693 Å. The mean short distances in V4+ vanadyl minerals are 1.597 Å (CN = 5) and 1.590 Å (CN = 6), whereas the mean short distance in five V5+ minerals is 1.647 Å (CN = 5) and in 14 V5+ minerals is 1.644 Å (CN = 6). We compare the polarizabilities of [5]Ti and [5,6]V4+ and [5,6]V5+ ions with the polarizabilities of [4]-coordinated Ti4+ ([4]Ti4+ ) and [6]-coordinated Ti4+ ([6]Ti4+ ) and of [4]-, [5]-, and [6]-coordinated V4+ and V5+ ([n]V4+ and [n]V5+) and hypothesize that the reduced polarizability of [5]Ti4+, [5]V5+, and [6]V5+ ions is caused by the short Ti–O* and V=O bonds.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3